电镀与精饰
主办单位:天津市科学技术协会
国际刊号:1001-3849
国内刊号:12-1096/TG
学术数据库优秀期刊 《中文科技期刊数据库》来源期刊
       首 页   |   期刊介绍   |   新闻公告   |   征稿要求   |   期刊订阅   |   留言板   |   联系我们   
  本站业务
  在线期刊
      最新录用
      期刊简明目录
      本刊论文精选
      过刊浏览
      论文下载排行
      论文点击排行
      
 

访问统计

访问总数:26068 人次
 
    本刊论文
稳压电源抗干扰分析与设计

  摘要:电源是智能大厦不可缺少的组成部分,文章主要阐述了智能大厦稳压电源内部产生干扰的机理,介绍了一些常用的抑制干扰方法。

  论文关键词:稳压电源,干扰,抑制,设计  电源是智能大厦各种电子设备必不可少的重要组成部分。电源性能的优劣直接影响电子系统的性能指标。由于智能大厦中电子计算机、微处理器以及其它电子仪器设备普遍存在绝缘强度低、对供电电源的质量要求高、过电压耐受能力差等弱点,一般都承受不了±5 V电压波动,使得这些高灵敏的电子系统在运行时,经常出现程序运行错误、数据错误、时间错误、死机、无故重新启动甚至造成用电设备的永久性损坏,因而造成巨大损失。

    1 稳压电源的干扰方式  智能大厦稳压电源的干扰主要包括电磁干扰和射频干扰。电磁干扰的缩写是“EMI”,而“RFI”是射频干扰的缩写。长期以来,一直有过分强调开关型电源固有emi的倾向,而忽视了线性电源产生电气噪声的可能。因为开关电源工作时,其内部的电压和电流波形都是以非常短的时间上升和下降的,所以开关电源本身是一个射频干扰源;另一方面是由于片面的认为线性电源的各部分都工作于平滑状态,实际上,线性电源也产生开关瞬变。另外若按噪声干扰源种类来分,可分为尖峰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。

    2 稳压电源中的干扰源  3.1 智能大厦开关电源中开关管工作时产生的谐波干扰  在智能大厦开关电源中,功率开关管在导通时流过较大的脉冲电流。例如反激型变换器的输入电流波形近似为三角波,而正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。利用傅氏级数分解上述电流波形可知:近似矩形波电流高次谐波分量的振幅是以20db每十倍频的速率下降;近似三角波电流高次谐波分量的振幅是以40db每十倍频的速率下降。因此,正激型、推挽型和桥式变换器的谐波干扰比反激型变换器大些。当采用零电流和零电压开关时,这种谐波干扰将会很小。另外功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

    3.2 智能大厦交流输入回路产生的干扰  无工频变压器的开关电源输入端整流管在反向恢复期间也会引起高频衰减振荡产生干扰。一般整流电路后面总要接比较大的平滑滤波电容,因而整流管的导通角较小,会引起很大的充电电流,使交流输入侧的交流电流发生畸变,影响了电网的供电质量。另外,平滑滤波电容的等效串联电感也有较大的影响。开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成干扰和干扰的再辐射;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这些电磁场也会干扰附近的电子设备。

    3.3 高压电源中的电噪声  高压电源也传播和辐射电气噪声。这种与电压有关的噪声,从几千伏开始出现,当电压高达几十千伏时变得更加明显。高压整流堆的“辐射”是这种噪声来源之一。这种噪声主要包含射频能量,它是因组成整流堆的许多二极管的迅速通断而产生的。第二种情况是高压电源特有的电晕。电晕是气体的电离。电晕放电激发由电路寄生参数引起的各种谐振,并经常产生杂乱的背景噪声干扰。这种干扰不是连续的,而是随温度、大气状况和电源使用方法的变化而改变。

    4 智能大厦电源抑制干扰的基本方法  干扰源、传播途径和受扰设备是智能大厦电源形成电磁干扰的三要素,因而抑制智能大厦电源中电磁干扰也应该从这三个方面着手。首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦和辐射,切断电磁干扰的传播途径;三是提高受扰设备的抗扰能力,降低对噪声的敏感度。

    (1)关电源本身就是一个电磁干扰发生源,产生电磁干扰的主要原因是电压和电流急剧变化。因此需要尽可能地降低电路中电压和电流的变化率(du/dt、di/dt)。通过增大开关时间,降低开关频率的办法可以减少电磁干扰,但这些办法都与开关电源体积小的特点相违背。近年来,已经研制成功的谐振式、准谐振式、PWM控制的软开关等功率变换器使功率开关在电压或电流过零时关断和开通,从而不仅降低了开关的动态损耗,也减少了电路中的动态du/dt、di/dt,抑制了电路中的电磁干扰强度。

    (2)采用屏蔽技术可以有效的抑制开关电源的电磁辐射干扰。屏蔽的基本思想就是把电磁干扰波引到阻抗比波阻抗低得多的屏蔽导体表面上。在这种情况下电磁波的一部分能量被导体反射,一部分被导体吸收,只有少部分穿过屏蔽层。通常所说的电场容易被较薄的金属壁或隔板反射,甚至在塑料表面喷涂一层导体也能有效的反射电磁波。虽然屏蔽作用主要依靠反射,但是吸收作用也随频率和这种电屏蔽层的厚度增加而增加。

    (3)优化电路设计结构。电路结构紧凑,元件小巧和采用印刷电路为特点的现代电源装置比老设备优越得多。在老式设备中,过长的连线起了谐振回路(或“天线”)的作用。因此增加了来自二极管(或开关管)的电磁干扰。一般来说,反向恢复特性所包围的那部分面积越小,整流过程开关瞬变产生的电磁干扰所带能量越少。因此在电路设计中,一定要考虑整流电路在满足散热条件下,尽量缩短线路,减少空间。

  参考文献:

  [1]崔华人。电子器件选用大全[M].杭州:浙江科技出版社,2000.

  [2]陈有卿,刘海平。新颖集成电路应用手册[M].北京:人民邮电出版社,1997.

  [3]孟建新,陶国成等。稳压电源的抗干扰分析和设计[J],苏州城建环保学院学报,2001,4.

  [4]陶国成等。电源抗电池干扰的研究[J],连云港化工高等专科学校学报,2002,4.

特别说明:本站仅协助已授权的杂志社进行在线杂志订阅,非《电镀与精饰》杂志官网,直投的朋友请联系杂志社。
版权所有 © 2009-2024《电镀与精饰》编辑部  (权威发表网)   苏ICP备20026650号-8